Fiche 11. Longueur, aire, volume

Savoir.

☐ Connaître le lien entre intégrale et aire sous la courbe.

Savoir-faire.

☐ Savoir appliquer les formules données pour calculer des longueurs, des aires et des volumes.

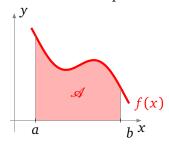
Vidéo ■ Fiche 11. Longueur, aire, volume

Nous allons donner quelques exemples d'application du calcul intégral aux calculs d'aires, de longueurs ou de volumes.

Aire sous une courbe

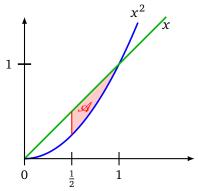
On sait déjà que l'aire sous le graphe d'une fonction est mesurée par une intégrale.

$$\mathscr{A} = \int_{a}^{b} f(x) \, \mathrm{d}x$$



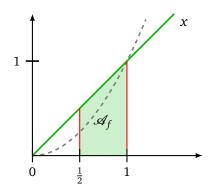
Cette propriété permet de calculer des aires délimitées par deux courbes.

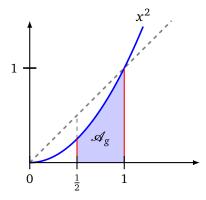
Exercice. Combien vaut l'aire représentée sur ce dessin?



Solution. On note f(x) = x et $g(x) = x^2$. L'aire \mathcal{A} est délimitée par les graphes de la fonction f et g, la droite d'équation $x = \frac{1}{2}$ (et la droite d'équation x = 1).

Cette aire se calcule comme la différence des deux aires $\mathcal{A}_f - \mathcal{A}_g$.



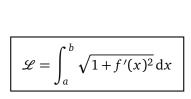


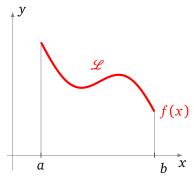
On a donc:

$$\mathcal{A} = \mathcal{A}_f - \mathcal{A}_g = \int_{\frac{1}{2}}^1 f(x) dx - \int_{\frac{1}{2}}^1 g(x) dx$$
$$= \int_{\frac{1}{2}}^1 f(x) - g(x) dx = \int_{\frac{1}{2}}^1 x - x^2 dx$$
$$= \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{\frac{1}{2}}^1 = \left(\frac{1}{2} - \frac{1}{3} \right) - \left(\frac{1}{8} - \frac{1}{24} \right)$$
$$= \frac{1}{12}.$$

Longueur d'une courbe

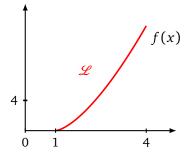
Formule. Soit $f:[a,b] \to \mathbb{R}$ une fonction dérivable. La longueur \mathcal{L} de la courbe de f entre les abscisses a et b est donnée par :





Cette formule n'est pas à connaître, elle sera donnée à chaque fois, mais il faut savoir l'appliquer!

Exercice. Quelle est la longueur de cette portion de courbe définie par $f(x) = \frac{2}{3}(x-1)^{\frac{3}{2}}$ sur l'intervalle [1,4]?



Solution.

Considérons $f(x) = \frac{2}{3}(x-1)^{\frac{3}{2}}$ sur l'intervalle [1,4]. Alors $f'(x) = \sqrt{x-1}$, donc $f'(x)^2 = x-1$. Ainsi :

$$\mathcal{L} = \int_{1}^{4} \sqrt{1 + f'(x)^{2}} \, dx = \int_{1}^{4} \sqrt{1 + \sqrt{x - 1}^{2}} \, dx$$
$$= \int_{1}^{4} \sqrt{1 + (x - 1)} \, dx = \int_{1}^{4} \sqrt{x} \, dx$$
$$= \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{1}^{4} = \frac{2}{3} (8 - 1) = \frac{14}{3}.$$

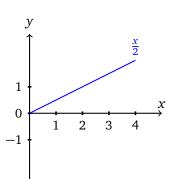
Volume

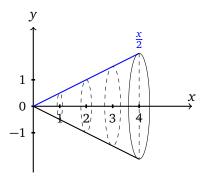
Formule. Soit $f:[a,b] \to \mathbb{R}$ une fonction. On considère l'objet obtenu par rotation du graphe de f autour de l'axe des abscisses. Le volume \mathscr{V} de l'objet est donné par :

$$\mathcal{V} = \int_{a}^{b} \pi f(x)^{2} \, \mathrm{d}x$$

Cette formule n'est pas à connaître.

Exercice. Quel volume est obtenu par rotation du graphe de $f(x) = \frac{x}{2}$ autour de l'axe des abscisses sur l'intervalle [0,4]?





Solution. Soit $f:[0,4] \to \mathbb{R}$ définie par $f(x) = \frac{x}{2}$. Par rotation du graphe de f autour de l'axe des abscisses, on obtient un cône ayant pour sommet l'origine. La formule du volume s'écrit :

$$\mathcal{V} = \int_0^4 \pi f(x)^2 dx = \pi \int_0^4 \frac{x^2}{4} dx = \frac{\pi}{4} \left[\frac{x^3}{3} \right]_0^4 = \frac{16\pi}{3}.$$

Exercice. Retrouver ce résultat en appliquant la formule du volume d'un cône $\mathcal{V} = \frac{1}{3}Sh$, ou S est la surface de la base (ici l'aire du disque en x = 4) et h la hauteur (ici h = 4).

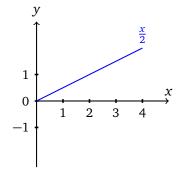
Aire de la surface d'un objet

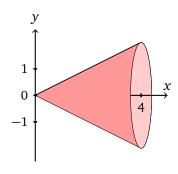
Formule. Soit $f : [a, b] \to \mathbb{R}$ une fonction positive. On considère l'objet obtenu par rotation du graphe de f autour de l'axe des abscisses. L'aire \mathscr{S} de la surface de l'objet obtenu est donnée par :

$$\mathscr{S} = \int_a^b 2\pi f(x) \sqrt{1 + f'(x)^2} dx.$$

Cette formule n'est pas à connaître.

Exercice. Quelle est l'aire de la surface de l'objet obtenu par rotation du graphe de $f(x) = \frac{x}{2}$ autour de l'axe des abscisses sur l'intervalle [0,4]?





Solution. Soit $f:[0,4] \to \mathbb{R}$ définie par $f(x) = \frac{x}{2}$. Par rotation du graphe de f autour de l'axe des abscisses, on obtient un cône ayant pour sommet l'origine. La formule de la surface du cône s'écrit :

$$\mathscr{S} = \int_0^4 2\pi f(x) \sqrt{1 + f'(x)^2} \, \mathrm{d}x = 2\pi \int_0^4 \frac{x}{2} \sqrt{1 + \frac{1}{4}} \, \mathrm{d}x = \frac{\pi\sqrt{5}}{2} \left[\frac{x^2}{2} \right]_0^4 = \frac{\pi\sqrt{5}}{2} \times \frac{4^2}{2} = 4\pi\sqrt{5}.$$

3