Fiche 4. Étude de fonctions

Savoir.

- ☐ Connaître les différentes étapes d'une étude de fonction.
- ☐ Connaître ses formules : fonctions usuelles, dérivées, limites.

Savoir-faire.

- ☐ Savoir faire une étude complète de fonction.
- ☐ Savoir tracer le graphe d'une fonction.
- ☐ Savoir calculer les asymptotes.

On considère la fonction f définie par l'expression $f(x) = \ln\left(\frac{x^2+1}{x}\right)$. Cet exemple servira de modèle pour expliquer comment réaliser une étude de fonction.

Les différentes étapes sont les suivantes (qu'il faudra éventuellement adapter selon la fonction).

- 1. Domaine de définition
- 2. Calcul de la dérivée
- 3. Calcul des limites
- 4. Sens de variation
- 5. Tableau de variations
- 6. Représentation graphique
- 7. Asymptotes

1. Domaine de définition

Trouver l'ensemble de définition \mathcal{D}_f de f c'est répondre à la question : "Pour quels réels x l'expression f(x) a-t-elle un sens ?"

- On sait que la fraction $\frac{x^2+1}{x}$ est définie pour $x \in \mathbb{R}^*$ ($\mathbb{R}^* = \mathbb{R} \setminus \{0\}$).
- On sait que la fonction logarithme est définie sur $\mathbb{R}_{+}^{*} =]0, +\infty[$.

Il suffit donc de déterminer les réels non nuls x tels que $\frac{x^2+1}{x} > 0$. Mais, comme $x^2+1>0$, cela équivaut à x>0 et donc $\mathcal{D}_f=\mathbb{R}_+^*=]0,+\infty[$.

2. Calcul des limites

Pour une fonction f donnée, on détermine ses limites sur la frontière de son ensemble de définition.

Dans notre exemple $f(x) = \ln\left(\frac{x^2 + 1}{x}\right)$, on a montré que $\mathcal{D}_f =]0, +\infty[$. Ainsi, nous allons déterminer les limites de f en 0 (à droite) et en $+\infty$.

Limite à droite en 0.

- On sait que $\lim_{x \to 0^+} x^2 + 1 = 1$ et $\lim_{x \to 0^+} x = 0^+$ donc $\lim_{x \to 0^+} \frac{x^2 + 1}{x} = +\infty$.
- On sait que $\lim_{y \to +\infty} \ln(y) = +\infty$.

Ainsi,
$$\lim_{x \to 0^+} \ln \left(\frac{x^2 + 1}{x} \right) = +\infty$$
.

Limite en $+\infty$.

— Pour tout x > 0 on a :

$$\frac{x^2+1}{x} = \frac{x^2\left(1+\frac{1}{x^2}\right)}{x} = x\left(1+\frac{1}{x^2}\right).$$

— On sait que $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ et donc que $\lim_{x \to +\infty} 1 + \frac{1}{x^2} = 1$. D'où $\lim_{x \to +\infty} \frac{x^2 + 1}{x} = +\infty$.

Ainsi,
$$\lim_{x \to +\infty} \ln \left(\frac{x^2 + 1}{x} \right) = +\infty$$
.

3. Calcul de la dérivée

La fonction f est dérivable sur $]0, +\infty[$, calculons sa dérivée f'.

- On sait que f est de la forme $f(x) = \ln(u(x))$ avec $u(x) = \frac{x^2 + 1}{x}$. Donc, pour tout x > 0, on a : $f'(x) = \frac{u'(x)}{u(x)}.$
- On sait que u est de la forme $u(x) = \frac{v(x)}{w(x)}$ avec $v(x) = x^2 + 1$ et w(x) = x. Donc, pour tout x > 0, on a : $u'(x) = \frac{v'(x)w(x) v(x)w'(x)}{(w(x))^2}$.
- On sait que v'(x) = 2x et w'(x) = 1. Ainsi, $u'(x) = \frac{2x^2 (x^2 + 1)}{x^2} = \frac{x^2 1}{x^2}$.

On peut donc conclure que, pour tout x > 0, on a :

$$f'(x) = \frac{\frac{x^2 - 1}{x^2}}{\frac{x^2 + 1}{x}} = \frac{x^2 - 1}{x^2} \times \frac{x}{x^2 + 1} = \frac{x^2 - 1}{x(x^2 + 1)}.$$

4. Sens de variation

Le signe de la dérivée d'une fonction permet de déterminer son sens de variation.

Rappel. Soit *I* un intervalle et $f: I \to \mathbb{R}$ une fonction dérivable.

- a) Si f'(x) > 0 pour tout $x \in I$ alors f est strictement croissante sur I.
- b) Si f'(x) < 0 pour tout $x \in I$ alors f est strictement décroissante sur I.
- c) Si f'(x) = 0 pour tout $x \in I$ alors f est constante sur I.

Dans notre exemple, commençons par déterminer le signe de f'. On sait que, pour tout x > 0, on a : $f'(x) = \frac{x^2 - 1}{x(x^2 + 1)}$. Or, pour tout x > 0, on a $x(x^2 + 1) > 0$. Ainsi, le signe de f' ne dépend que de celui

de $x^2 - 1$ pour $x \in \mathbb{R}_+^*$.

Déterminons le signe de x^2-1 : comme $x^2-1=(x-1)(x+1)$ (nous utilisons l'identité remarquable $a^2-b^2=(a-b)(a+b)$ avec a=x et b=1) alors $x^2-1<0$ pour tout $x\in]-1,1[$ et $x^2-1>0$ pour tout $x\in]-\infty,-1[\cup]1,+\infty[$. Ainsi,

- on obtient : f'(x) < 0 pour tout $x \in]0,1[$,
- on obtient : f'(x) > 0 pour tout $x \in]1, +\infty[$,
- et f'(1) = 0.

D'où:

- La fonction f est strictement décroissante sur]0,1[,
- La fonction f est strictement croissante sur $]1,+\infty[$.
- le graphe de la fonction f admet une tangente horizontale en 1.

5. Tableau de variations

Le tableau de variations permet de récapituler toutes les informations précédemment trouvées sur la fonction à étudier.

Dans le cas de la fonction définie par $f(x) = \ln\left(\frac{x^2 + 1}{x}\right)$, voici le tableau de variations que l'on obtient.

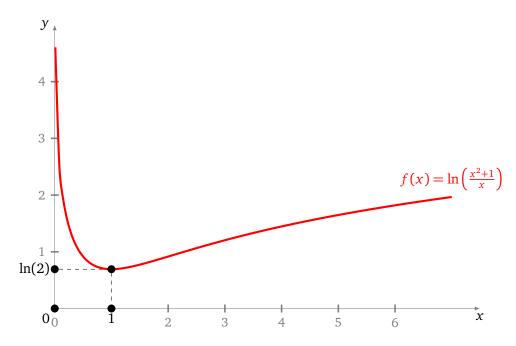
x	0	1	+∞
f'(x)		- 0	+
f(x)		+∞ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>+∞

On obtient également que f admet un minimum local, qui est ici global, en x=1. Ce minimum global vaut $f(1) = \ln\left(\frac{1^2+1}{1}\right) = \ln(2)$.

6. Représentation graphique

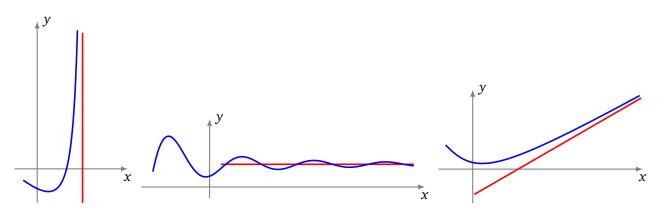
Le graphe d'une fonction est obtenu à partir des informations contenues dans le tableau de variation et du calcul de quelques valeurs.

Voici la représentation graphique de la fonction f définie par $f(x) = \ln\left(\frac{x^2 + 1}{x}\right)$.



7. Asymptotes

De gauche à droite : asymptote verticale, horizontale, oblique.



- **Asymptote verticale.** Si, quand x tend vers a, f(x) tend vers $+\infty$ (ou $-\infty$) la droite d'équation x = a est *asymptote verticale* au graphe de f.
- **Asymptote horizontale.** Si, quand x tend vers $+\infty$, f(x) tend vers $\ell \in \mathbb{R}$, la droite d'équation $y = \ell$ est *asymptote horizontale* au graphe de f.
- **Asymptote oblique.** La droite d'équation y = ax + b est asymptote oblique au graphe de f:
 - a) si $\frac{f(x)}{x}$ tend vers un réel a,
 - b) et si f(x) ax tend vers un réel b.

Pour l'exemple utilisé dans cette fiche, le graphe de f admet une asymptote verticale en 0^+ . Des exemples d'asymptotes obliques seront faits en exercices.