Fiche 1. Fonctions usuelles

Savoir.

- □ Connaître les fonctions usuelles, leur domaine de définition, leurs limites, l'allure du graphe et leur dérivée.
- ☐ Maîtriser la fonction exponentielle et la fonction logarithmique.
- ☐ Réviser ses formules trigonométriques.

Savoir-faire.

- ☐ Déterminer le domaine de définition d'une fonction.
- \square Savoir utiliser l'égalité $x^{\alpha} = e^{\alpha \ln(x)}$ dans les deux sens.

Domaine de définition

- Une fonction f associe à un réel x un réel noté f(x).
- Exemple:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2$$

Alors f(3) = 9, f(-4) = 16.

— Exemple:

$$f: [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x}$$

La fonction n'est pas définie pour des x < 0.

- Le **domaine de définition** d'une fonction f est l'ensemble des x, où l'expression f(x) est définie. *Note.* Si on vous donne l'expression d'une fonction f, sans préciser l'ensemble de départ c'est à vous de déterminer le domaine de définition!
- Exemples : trouvons le domaine de définition des fonctions suivantes.

$$f(x) = \frac{x-1}{x+1} \qquad \mathcal{D}_f = \mathbb{R} \setminus \{-1\} =]-\infty, -1[\cup]-1, +\infty[$$

$$f(x) = \frac{1}{x^2 - 4} \qquad \mathcal{D}_f = \mathbb{R} \setminus \{-2, +2\}$$

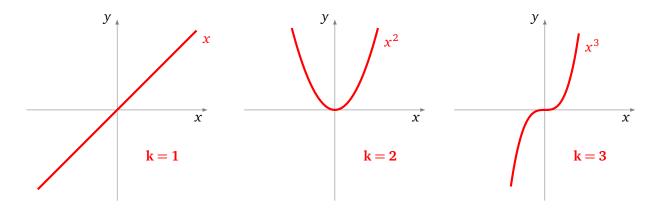
$$f(x) = \sqrt{x^2 - 4} \qquad \mathcal{D}_f =]-\infty, -2] \cup [+2, +\infty[$$

Fonction polynôme

- Une **fonction monôme** est définie par $f(x) = x^k$ où $k \in \mathbb{N}$ est un entier.
- Le domaine de définition est $\mathcal{D}_f = \mathbb{R}$.
- La dérivée est $(x^k)' = kx^{k-1}$.
- Les limites en $+\infty$ et $-\infty$ sont :

$$\lim_{x \to +\infty} x^k = +\infty \qquad \text{et} \qquad \lim_{x \to -\infty} x^k = \begin{cases} +\infty & \text{si } k \text{ est pair} \\ -\infty & \text{si } k \text{ est impair} \end{cases}$$

— Une **fonction polynôme** est une somme de fonctions monômes. Par exemple, les fonctions définies par f(x) = x et $g(x) = x^3 - 4x + 13$ sont des fonctions polynômes.



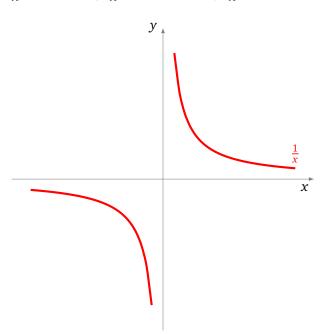
Fonction inverse

- La **fonction inverse** est définie par $f(x) = \frac{1}{x}$, notée aussi $f(x) = x^{-1}$.
- Le domaine de définition est $\mathcal{D}_f=\mathbb{R}\setminus\{0\}$, car il est interdit de diviser par 0.
- La dérivée est $\left| \left(\frac{1}{x} \right)' = -\frac{1}{x^2} \right|$
- Les limites de f sont :

$$\lim_{x\to -\infty}\frac{1}{x}=0 \qquad \lim_{x\to 0^-}\frac{1}{x}=-\infty \qquad \lim_{x\to 0^+}\frac{1}{x}=+\infty \qquad \lim_{x\to +\infty}\frac{1}{x}=0$$

$$\lim_{r\to 0^+} \frac{1}{r} = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

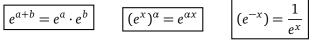


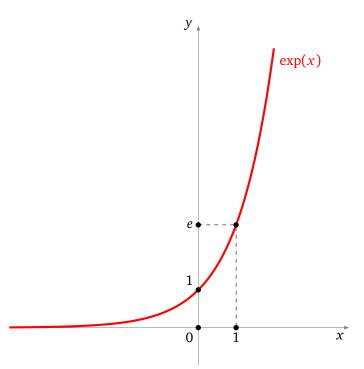
Fonction exponentielle

- La **fonction exponentielle** $f(x) = \exp(x)$ se note aussi par $f(x) = e^x$.
- Son domaine de définition est $\mathcal{D}_f = \mathbb{R}$.
- On a $\exp(x) > 0$ pour tout $x \in \mathbb{R}$.
- $--\exp(0) = 1$, $\exp(1) = e \simeq 2.718$.
- La dérivée est la fonction elle-même : $\exp'(x) = \exp(x)$.
- Les limites de f sont :

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to +\infty} e^x = +\infty$$

— Propriétés:





Fonction logarithme

- Le **logarithme népérien** se note $f(x) = \ln(x)$.
- Son domaine de définition est $\mathcal{D}_f =]0, +\infty[$. Le logarithme n'est pas défini pour des x négatifs ou nuls.
- $-\ln(1) = 0$, $\ln(e) = 1$.
- Propriétés:

$$\ln(a \times b) = \ln(a) + \ln(b)$$

$$\ln(x^{\alpha}) = \alpha \ln(x)$$

$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

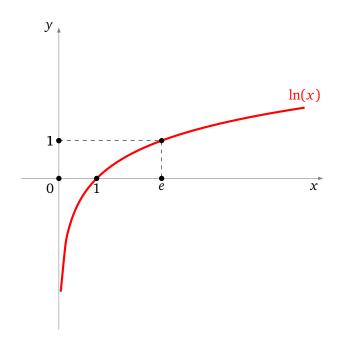
— Le logarithme est la bijection réciproque de l'exponentielle :

$$ln(exp(x)) = x \qquad pour tout x \in \mathbb{R}$$

$$\exp(\ln(x)) = x$$
 pour tout $x > 0$

- La dérivée du logarithme est la fonction inverse $\ln'(x) = \frac{1}{x}$.
- Les limites de f sont :

$$\lim_{x \to 0^+} \ln(x) = -\infty \qquad \lim_{x \to +\infty} \ln(x) = +\infty$$



Fonctions puissances

— Les **fonctions puissances** $f(x) = x^{\alpha}$, avec $\alpha \in \mathbb{R}$ fixé, généralisent les fonctions polynômes (où l'exposant était un entier).

— Elles sont définies par :

$$x^{\alpha} = e^{\alpha \ln(x)}$$

Autrement dit $x^{\alpha} = \exp(\alpha \ln(x))$.

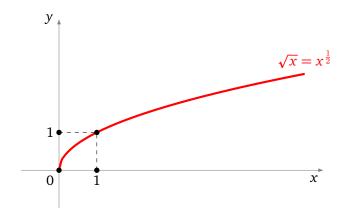
— Le domaine de définition est $\mathcal{D}_f =]0, +\infty[$.

— La dérivée est $(x^{\alpha})' = \alpha x^{\alpha-1}$

— Exemple (carré) : $\alpha = 2$, on retrouve la fonction carrée $x^{\alpha} = e^{2\ln(x)} = (e^{\ln(x)})^2 = x^2$.

— Exemple (racine carrée) : $\alpha = \frac{1}{2}$, alors $x^{\frac{1}{2}} = \sqrt{x}$, qui vérifie bien sûr $(x^{\frac{1}{2}})^2 = x$.

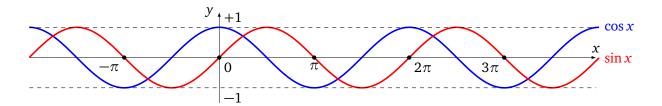
— Exemple (racine cubique) : $\alpha = \frac{1}{3}$, alors $x^{\frac{1}{3}} = \sqrt[3]{x}$, qui vérifie $(x^{\frac{1}{3}})^3 = x$.



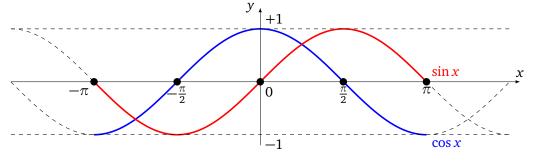
Sinus, cosinus, tangente

— Les fonctions **sinus** et **cosinus** sont définies sur \mathbb{R} .

— Les dérivée sont $\sin'(x) = \cos(x)$ et $\cos'(x) = -\sin(x)$



Voici un zoom sur l'intervalle $[-\pi, \pi]$.



— La **tangente** est définie par $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Elle est définie si $\cos(x) \neq 0$, c'est-à-dire si $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$. Sa dérivée peut s'écrire de deux façons différentes : $\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$

Rappels de trigonométrie

$$\cos^2 x + \sin^2 x = 1$$
$$\cos(x + 2\pi) = \cos x$$
$$\sin(x + 2\pi) = \sin x$$

