
Arithmetic – While loop – II

Our study of numbers is further developed with the “while” loop. For this chapter you will need the
is_prime() function you wrote in the “Arithmetic – While loop – I” part.

Activity 1 (Goldbach’s conjecture(s)).

Goal: study two Goldbach conjectures. A conjecture is a statement that you think is true but you
not know how to prove it.

1. Goldbach’s good guess: Every even integer greater than 4 is the sum of two prime numbers.
For example 4= 2+ 2, 6= 3+ 3, 8= 3+ 5, 10= 3+ 7 (but also 10= 5+ 5), 12= 5+ 7,. . . For
n= 100 there are 6 solutions: 100= 3+ 97= 11+ 89= 17+ 83= 29+ 71= 41+ 59= 47+ 53.
No one can prove this conjecture, but you will see that there are good reasons to believe it is true.
(a) Program a number_solutions_goldbach(n) function which for a given even integer n,

finds how many decompositions n= p+ q there are where p and q are prime numbers and
p 6 q.
For example, for n = 8, there is only one solution 8 = 3+ 5, but for n = 10 there are two
solutions 10= 3+ 7 and 10= 5+ 5.
Hints.

• It is therefore necessary to test all p including 2 and n/2;

• set q = n− p;

• we have a solution when p 6 q and p and q are both prime numbers.
(b) Prove with the machine that the Goldbach conjecture is verified for all even integers n between

4 and 10 000.
2. Goldbach’s bad guess: Every odd integer n can be written as

n= p+ 2k2

where p is a prime number and k is an integer (possibly zero).
(a) Program an is_decomposition_goldbach(n) function that returns “True” when there is

a decomposition of the form n= p+ 2k2.
(b) Show that Goldbach’s second guess is wrong! There are two integers smaller than 10000

that do not have a decomposition of this form. Find them!

Activity 2 (Numbers with 4 or 8 divisors).

Goal: disprove a conjecture by doing a lot of calculations.

Conjecture: Between 1 and N, there are more integers that have exactly 4 divisors than integers that have
exactly 8 divisors.

ARITHMETIC – WHILE LOOP – II 2

You will see that this conjecture looks true for N that are rather small, but you will show that this
conjecture is false by finding a large N that contradicts this statement.

1. Number of divisors.
Program a number_of_divisors(n) function that returns the number of integers dividing n.
For example: number_of_divisors(100) returns 9 because there are 9 divisors of n= 100:

1, 2,4, 5,10, 20,25, 50,100

Hints.
• Don’t forget 1 and n as divisors.

• Try to optimize your function because you will use it intensively: for example, there are no
divisors strictly larger than n

2 (except n).
2. 4 or 8 divisors.

Program a four_and_eight_divisors(Nmin,Nmax) function that returns two numbers: (1)
the number of integers n with Nmin 6 n< Nmax that admit exactly 4 divisors and (2) the number
of integers n with Nmin 6 n< Nmax that admit exactly 8 divisors.
For example four_and_eight_divisors(1,100) returns (32,10) because there are 32 inte-
gers between 1 and 99 that admit 4 divisors, but only 10 integers that admit 8.

3. Proof that the conjecture is false.
Check that for “small” values of N (up to N = 10 000 for example) there are more integers with 4
divisors than 8. But check that for N = 300 000 this is no longer the case.
Hints. As there are many calculations, you can split them into slices (the slice of integers 1 6
n< 50000, then 50000 6 n< 100000,...) and then add them up. This allows you to split your
calculations between several computers.

Activity 3 (121111. . . is never prime?).

Goal: study a new false conjecture!

We call Uk the following integer:

Uk = 1 2 1 11 . . . 1 11
︸ ︷︷ ︸

k occurrences of 1
formed by the digit 1, then the digit 2, then k times the digit 1.
For example U0 = 12, U1 = 121, U2 = 1211, . . .

1. Write a function one_two_one(k) that returns the integer Uk.
Hint. You can notice that starting with U0 = 12, we have the relationship Uk+1 = 10 · Uk + 1. So
you can start with u = 12 and repeat a number of times u = 10*u + 1.

2. Check with your machine that U0, . . . , U20 are not prime numbers.

You might think it’s still the case, but it’s not true. The integer U136 is a prime number! Unfortunately
it is too big to be verified with our algorithms. In the following point we will define what is an almost
prime number to be able to push the calculations further.

3. Program a function is_almost_prime(n,r) that returns “True” if the integer n does not admit
any divisor d such that 1< d 6 r (we assume r < n).
For example: n= 143= 11× 13 and r = 10, then is_almost_prime(n,r) is “True” because n
does not allow any divisor less than or equal to 10. (But of course, n is not a prime number.)
Hint. Adapt your is_prime(n) function!

4. Find all the integers Uk with 0 6 k 6 150 which are almost prime for r = 1 000 000 (i.e. they are
not divisible by any integer d with 1< d 6 1 000000).

ARITHMETIC – WHILE LOOP – II 3

Hint. In the list you must find U136 (which is a prime number) but also U34 which is not prime but
whose smallest divisor is 10149 217781.

Activity 4 (Integer square root).

Goal: calculate the integer square root of an integer.

Let n > 0 be an integer. The integer square root of n is the largest integer r > 0 such as r2 6 n. Another
definition is to say that the integer square root of n is

p
n rounded down to the nearest integer.

Examples:
• n = 21, then the integer square root of n is 4 (because 42 6 21, but 52 > 21). In other words,p

21= 4.58 . . ., and we round down to the nearest integer, so it is 4.

• n = 36, then the integer square root of n is 6 (because 62 6 36, but 72 > 36). In other words,p
36= 6 and the integer square root is of course also 6.

1. Write a first function that calculates the integer square root of an integer n, first by calculating
p

n,
then rounding down.
Hints.

• For this question only, you can use the math module of Python.

• In this module sqrt() returns the real square root.

• The floor() function of the same module returns the number rounded down to the nearest
integer.

2. Write a second function that calculates the integer square root of an integer n, but this time
according to the following method:

• Start with p = 0.

• As long as p2 6 n, increment the value of p by 1.
Think carefully about what the returned value should be (beware of the offset!).

3. Write a third function that still calculates the integer square root of an integer n with the algorithm
described below. This algorithm is called the Babylonian method (or Heron’s method or Newton’s
method).

Algorithm.
Input: a positive integer n
Output: its integer square root

• Start with a = 1 and b = n.

• As long as |a− b|> 1, repeat:
– a← (a+ b)//2,

– b← n//a.

• Return the minimum between a and b: this is the integer square root of n.

We do not explain how this algorithm works, but it is one of the most effective methods to calculate
square roots. The numbers a and b provide, during execution, an increasingly precise interval
containing of

p
n.

Here is a table that details an example calculation for the integer square root of n= 1664.

ARITHMETIC – WHILE LOOP – II 4

Step a b

i = 0 a = 1 b = 1664
i = 1 a = 832 b = 2
i = 2 a = 417 b = 3
i = 3 a = 210 b = 7
i = 4 a = 108 b = 15
i = 5 a = 61 b = 27
i = 6 a = 44 b = 37
i = 7 a = 40 b = 41

In the last step, the difference between a and b is less than or equal to 1, so the integer square
root is 40. We can verify that this is correct because: 402 = 1600 6 1664< 412 = 1681.

Bonus. Compare the execution speeds of the three methods using timeit(). See the “Functions” chapter.

Lesson 1 (Exit a loop).
It is not always easy to find the right condition for a “while” loop. Python has a command to immediately
exit a “while” loop or a “for” loop: this is the break command.
Here are some examples that use this break command. As it is rarely an elegant way to write your
program, alternatives are also presented.

Example.
Here are different codes for a countdown from 10 to 0.

Countdown

n = 10

while True: #Infinite loop

print(n)

n = n - 1

if n < 0:

break #Immediate stop

Better (with a flag)

n = 10

finished = False

while not finished:

print(n)

n = n - 1

if n < 0:

finished = True

Even better

n = 10

while n >= 0:

print(n)

n = n - 1

Example.
Here are programs that search for the integer square root of 777, i.e. the largest integer i that satisfies
i2 6 777. In the script on the left, the search is limited to integers i between 0 and 99.

Integer square root

n = 777

for i in range(100):

if i**2 > n:

break

print(i-1)

Better

n = 777

i = 0

while i**2 <= n:

i = i + 1

print(i-1)

ARITHMETIC – WHILE LOOP – II 5

Example.
Here are programs that calculate the real square roots of the elements in a list, unless of course the
number is negative. The code on the left stops before the end of the list, while the code on the right
handles the problem properly.

Square root of the elements

of a list

mylist = [3,7,0,10,-1,12]

for element in mylist:

if element < 0:

break

print(sqrt(element))

Better with try/except

mylist = [3,7,0,10,-1,12]

for element in mylist:

try:

print(sqrt(element))

except:

print("Warning, I don't know

how to compute the

square root of",element)

	Arithmetic – While loop – II

