
Arithmetic – While loop – I

The activities in this sheet focus on arithmetic: long division, prime numbers . . . This is an opportunity
to use the “while” loop intensively.

Lesson 1 (Arithmetic).
Let us recall what Euclidean division is. Here is the division of a by b, a is a positive integer, b is a strictly
positive integer (with the example of 100 divided by 7):

q

r

ab

quotient

remainder

14

2

1007

We have the two fundamental properties that define q and r:

a = b× q+ r and 0 6 r < b

For example, for the division of a = 100 by b = 7: we have the quotient q = 14 and the remainder r = 2
that verify a = b× q+ r because 100= 7× 14+ 2 and also r < b because 2< 7.

With Python:
• a // b returns the quotient,

• a % b returns the remainder.

It is easy to check that:
b is a divisor of a if and only if r = 0.

Activity 1 (Quotient, remainder, divisibility).

Goal: use the remainder to find out if one integer divides another.

1. Program a function named quotient_remainder(a,b) that does the following tasks for two
integers a > 0 and b > 0:

• It displays the quotient q of the Euclidean division of a per b,

• it displays the remainder r of this division,

ARITHMETIC – WHILE LOOP – I 2

• it displays True if the remainder r is positive or zero and strictly less than b, and False

otherwise,

• it displays True if you have equality a = bq+ r, and False if not.
Here is an example of what the call should display for quotient_remainder(100,7):

Division of a = 100 by b = 7

The quotient is q = 14

The remainder is r = 2

Check remainder: 0 <= r < b? True

Check equality: a = bq + r? True

Note. You have to check without cheating that we have 0 6 r < b and a = bq+ r, but of course it
must always be true!

2. Program a function called is_even(n) that tests if the integer n is even or not. The function
should return True or False.
Hints.

• First possibility: calculate n % 2.

• Second possibility: calculate n % 10 (which returns the digit of units).

• The smartest people will be able to write the function with only two lines (one for def...
and the other for return...).

3. Program a function called is_divisible(a,b) that tests if b divides a. The function should
return True or False.

Lesson 2 (“while” loop).
The “while” loop executes instructions as long as a condition is true. As soon as the condition becomes
false, it proceeds to the next instructions.

while condition :

instruction_1

instruction_2

...

other instructions

keyword "while"

a condition

colon

indented block will
be executed as long as
the condition is true

program continuation

ARITHMETIC – WHILE LOOP – I 3

Example.
Here is a program that displays the countdown
10,9,8, . . . 3, 2,1,0. As long as the condition n > 0 is
true, we reduce n by 1. The last value displayed is n = 0,
because then n = −1 and the condition “n > 0” becomes
false so the loop stops.

n = 10

while n >= 0:

print(n)

n = n - 1

This is summarized in the form of a table:
Input: n= 10

n “n > 0” ? new value of n

10 yes 9
9 yes 8

.
1 yes 0
0 yes −1
−1 no

Display: 10, 9,8, 7,6, 5,4, 3,2, 1,0

Example.

This piece of code looks for the first power of 2 greater
than a given integer n. The loop prints the values 2, 4,
8, 16,. . . It stops as soon as the power of 2 is higher or
equal to n, so this program displays 128.

n = 100

p = 1

while p < n:

p = 2 * p

print(p)

Inputs: n= 100, p = 1
p “p < n” ? new value of p

1 yes 2
2 yes 4
4 yes 8
8 yes 16
16 yes 32
32 yes 64
64 yes 128

128 no
Display: 128

ARITHMETIC – WHILE LOOP – I 4

Example.
For this last loop we have already prepared a function
called is_even(n) which returns True if the integer n
is even and False otherwise. The loop does this: as long
as the integer n is even, n becomes n/2. This amounts to
removing all factors 2 from the integer n. As n = 56 =
2× 2× 2× 7, this program displays 7.

n = 56

while is_even(n) == True:

n = n // 2

print(n)

Input: n= 56
n “is n even” ? new value of n

56 yes 28
28 yes 14
14 yes 7
7 no

Display: 7

For the latter example, it is much more natural to start the loop with
while is_even(n):

Indeed is_even(n) is already a value “True” or “False”. Therefore we’re getting closer to the English
sentence “while n is even...”

Operation “+=”. To increment a number you can use these two methods:
nb = nb + 1 or nb += 1

The second writing is shorter but makes the program less readable.

Activity 2 (Prime numbers).

Goal: test if an integer is (or not) a prime number.

1. Smallest divisor.
Program a function called smallest_divisor(n) that returns, the smallest divisor d > 2 of the
integer n > 2.
For example smallest_divisor(91) returns 7, because 91= 7× 13.

Method.
• We remind you that d divides n if and only if n % d is equal to 0.

• It is a bad idea to use a loop “for d ranging from 2 to n”, since, if for example we know that 7
is a divisor of 91 it is useless to test if 8, 9,10 . . . are also divisors because we have already
found a smaller one.

• A good idea is to use a “while” loop! The principle is: “as long as I haven’t got my divisor, I
should keep looking for”. (And so, as soon as I find it, I stop looking.)

• In practice here are the main lines:
– Begin with d = 2.

– As long as d does not divide n move on to the next candidate (d becomes d + 1).

– At the end d is the smallest divisor of n (in the worst case d = n).
2. Prime numbers (1).

ARITHMETIC – WHILE LOOP – I 5

Slightly modify your smallest_divisor(n) function to write your first prime function
is_prime_1(n) which returns “True” if n is a prime number and “False” otherwise.
For example is_prime_1(13) returns True, is_prime_1(14) returns False.

3. Fermat numbers.
Pierre de Fermat (∼1605–1665) thought that all integers of the form Fn = 2(2

n) + 1 were prime
numbers. Indeed F0 = 3, F1 = 5 and F2 = 17 are prime numbers. If he had known Python he
would probably have changed his mind! Find the smallest integer Fn which is not prime.
Hint. With Python bc is written b ** c and therefore a(b

c) is written a ** (b ** c).

We will improve our function which tests if a number is prime or not, it will allow us to test lots of
numbers or very large numbers more quickly.

4. Prime numbers (2).
Enhance your previous function to become is_prime_2(n). It should not test all the divisors d
from 2 to n, but only up to

p
n.

Explanations.
• For example, to test if 101 is a prime number, just see if it divisible by 2, 3, . . . , 10. It is faster!

• This improvement is due to the following proposal: if an integer is not prime then it admits a
divisor d that verifies 2 6 d 6

p
n.

• Instead of testing if d 6
p

n, it is easier to test if d2 6 n.
5. Prime numbers (3).

Improve your function to become is_prime_3(n) using the following idea. We test if n is divisible
by d = 2, but from d = 3, we just test the odd divisors (we test d, then d + 2. . .).

• For example to test if n= 419 is a prime number, we first test if n is divisible by d = 2, then
d = 3 and then d = 5, d = 7. . .

• This allows you to do about half less tests!

• Explanations: if an even number d divides n, then we already know that 2 divides n.
6. Calculation time.

Compare the calculation times of your different functions is_prime() by repeating the call
is_prime(97), for example, a million times. See the course below for more information on how
to do this.

Lesson 3 (Calculation time).
There are two ways to make programs run faster: a good way and a bad way. The bad way is to buy a
more powerful computer. The good method is to find a more efficient algorithm!
With Python, it is easy to measure the execution time of a function in order to compare it with the
execution time of another. Just use the module timeit.
Here is an example: we measure the computation time of two functions that have the same purpose, test
if an integer n is divisible by 7.

First function (not very clever)

def my_function_1(n):

divis = False

for k in range(n):

if k*7 == n:

divis = True

return divis

ARITHMETIC – WHILE LOOP – I 6

Second function (faster)

def my_function_2(n):

if n % 7 == 0:

return True

else:

return False

Measurement of execution times

import timeit

print(timeit.timeit("my_function_1(1000)",

setup="from __main__ import my_function_1",

number=100000))

print(timeit.timeit("my_function_2(1000)",

setup="from __main__ import my_function_2",

number=100000))

Results.
The result depends on the computer, but allows the comparison of the execution times of the two functions.

• The measurement for the first function (called 100 000 times) returns 5 seconds. The algorithm is
not very clever. We’re testing if 7× 1= n, then test 7× 2= n, 7× 3= n. . .

• The measurement for the second function returns 0.01 second! We test if the remainder of n divided
by 7 is 0. The second method is therefore 500 times faster than the first.

Explanations.
• The module is named timeit.

• The function timeit.timeit() returns the execution time in seconds. The function takes the
following parameters:

– a string for the call of the function to be tested (here we ask if 1000 is divisible by 7),

– an argument setup="..." which indicates where to find this function,

– the number of times you have to repeat the call to the function (here number=100000).

• The number of repetitions must be large enough to avoid uncertainties.

Activity 3 (More prime numbers).

Goal: program more “while” loops and study different kinds of prime numbers using your
is_prime() function.

1. Write a prime_after(n) function that returns the first prime number p greater than or equal to
n.
For example, the first prime number after n= 60 is p = 61. What is the first prime number after
n= 100000?

2. Two prime numbers p and p+2 are called twin prime numbers. Write a twin_prime_after(n)
function that returns the first pair p, p+ 2 of twin prime numbers, with p > n.
For example, the first pair of twin primes after n= 60 is p = 71 and p+ 2= 73. What is the first
pair of twin primes after n= 100000?

3. An integer p is a Germain prime number if p and 2p + 1 are prime numbers. Write a

ARITHMETIC – WHILE LOOP – I 7

germain_after(n) function that returns the pair p, 2p+ 1 where p is the first Germain prime
number p > n.
For example, the first Germain prime number after n= 60 is p = 83, with 2p+ 1= 167. What is
the first Germain prime number after n= 100 000?

	Arithmetic – While loop – I

