
Turtle (Scratch with Python)

The turtle module allows you to easily make drawings in Python. It’s about giving orders to a
turtle with simple instructions like “go ahead”, “turn”. . . It’s the same principle as with Scratch, but
with one difference: you no longer move blocks, instead you write the instructions.

Lesson 1 (The Python turtle).
Turtle is the ancestor of Scratch! In a few lines you can make beautiful drawings.

from turtle import *

forward(100) # Move forward

left(90) # Turn 90 degrees left

forward(50)

width(5) # Width of the pencil

forward(100)

color('red')

right(90)

forward(200)

exitonclick()

Here is a list of the main commands, accessible after writing:
from turtle import *

• forward(length) advances a number of steps

• backward(length) goes backwards

• right(angle) turns to the right (without advancing) at a given angle in degrees

• left(angle) turns left



TURTLE (SCRATCH WITH PYTHON) 2

• setheading(direction) points turtle in a direction (0 = right, 90 = top, −90 = bottom, 180 =
left)

• goto(x,y) moves to the point (x , y)

• setx(newx) changes the value of the abscissa

• sety(newy) changes the value of the ordinate

• down() sets the pen down

• up() sets the pen up

• width(size) changes the thickness of the line

• color(col) changes the color: "red", "green", "blue", "orange", "purple". . .

• position() returns the (x , y) position of the turtle

• heading() returns the direction angle to which the turtle is pointing

• towards(x,y) returns the angle between the horizontal and the segment starting at the turtle
and ending at the point (x , y)

• exitonclick() ends the program as soon as you click
The default screen coordinates range from −475 to +475 for x and from −400 to +400 for y; (0, 0) is in
the center of the screen.

x

y

−400 −300 −200 −100 100 200 300 400

−300

−200

−100

100

200

300

(0, 0)

Activity 1 (First steps).

Goal: create your first drawings.

Trace the first letters of Python, for example as below.



TURTLE (SCRATCH WITH PYTHON) 3

Activity 2 (Figures).

Goal: draw geometric shapes.

1. Pentagon. Draw a first pentagon (in blue). You have to repeat 5 times: advance 100 steps, turn 72
degrees.
Hint. To build a loop, use

for i in range(5):

(even if you do not use the variable i).
2. Pentagon (bis). Define a variable length which is equal to 200 and a variable angle which is

equal to 72 degrees. Draw a second pentagon (in red), this time advancing by length and turning
by angle.

3. Dodecagon. Draw a polygon having 12 sides (in purple).
Hint. To draw a polygon with n sides, it is necessary to turn an angle of 360/n degrees.

4. Spiral. Draw a spiral (in green).
Hint. Build a loop, in which you always turn at the same angle, but you move forward by a length
that increases with each step.

Activity 3 (Function graph).

Goal: draw the graph of a function.



TURTLE (SCRATCH WITH PYTHON) 4

Plot the graph of the square function and the sine function.
In order to get a curve in the turtle window, repeat for x varying from −200 to +200:

• set y = 1
100 x2,

• go to (x , y).
For the sinusoid, you can use the formula

y = 100sin
�

1
20

x
�

.

By default Python does not know the sine function, to use sin() you must first import the math module:
from math import *

To make the turtle move faster, you can use the command speed("fastest").

Activity 4 (Sierpinski triangle).

Goal: trace the beginning of Sierpinski’s fractal by nesting loops.

Here is how to picture the second drawing. Analyze the nesting of the loops and draw the next pictures.

for i in range(3):

color("blue")

forward(256)

left(120)

for i in range(3):

color("red")

forward(128)

left(120)



TURTLE (SCRATCH WITH PYTHON) 5



TURTLE (SCRATCH WITH PYTHON) 6

Activity 5 (The heart of multiplication tables).

Goal: draw the multiplication tables.

We set an integer n. We are studying the 2 table, that is to say we calculate 2× 0, 2× 1, 2× 2, up to
2× (n− 1). In addition, the calculations will be modulo n. We therefore calculate

2× k (mod n) for k = 0, 1, . . . , n− 1

How do we draw this table?
We place n points on a circle, numbered from 0 to n− 1. For each k ∈ {0, . . . , n− 1}, we connect the
point number k with the point number 2× k (mod n) by a segment.
Here is the layout, from the table of 2, modulo n= 10.

0

1

23

4

5

6

7 8

9

For example:
• the 3 point is linked to the 6 point, because 2× 3= 6;

• the 4 point is linked to the 8 point, because 2× 4= 8;

• the 7 point is linked to the 4 point, because 2× 7= 14= 4 (mod 10).

Draw the table of 2 modulo n, for different values of n.
Here is what it gives for n= 100.



TURTLE (SCRATCH WITH PYTHON) 7

Hints. For calculations modulo n, use the expression (2*k) % n.
Here’s how to get the coordinates of the vertices. This is done with the sine and cosine functions (available
from the math module). The coordinates (x i , yi) of the vertex number i, can be calculated by the formula:

x i = r cos
�

2iπ
n

�

and yi = r sin
�

2iπ
n

�

These points will be located on a circle of radius r, centered at (0,0). You will have to choose r rather
large (for example r = 200).

x

y

(x0, y0)

(x1, y1)

(xn−1, yn−1)

(x i , yi)

x i = r cos
�

2iπ
n

�

yi = r sin
�

2iπ
n

�

(0,0)

r

Lesson 2 (Several turtles).
Several turtles can be defined and move independently. Here’s how to define two turtles (one red and
one blue) and move them.

turtle1 = Turtle() # with capital 'T'!

turtle2 = Turtle()



TURTLE (SCRATCH WITH PYTHON) 8

turtle1.color('red')

turtle2.color('blue')

turtle1.forward(100)

turtle2.left(90)

turtle2.forward(100)

Activity 6 (The pursuit of turtles).

Goal: draw tracking curves.

Program four turtles running one after the other:

• turtle 1 runs after turtle 2,

• turtle 2 runs after turtle 3,

• turtle 3 runs after turtle 4,

• turtle 4 runs after turtle 1.

Here are the starting positions and orientations:

turtle 1

turtle 4 turtle 3

turtle 2



TURTLE (SCRATCH WITH PYTHON) 9

Hints. Use the following piece of code:

position1 = turtle1.position()

position2 = turtle2.position()

angle1 = turtle1.towards(position2)

turtle1.setheading(angle1)

• You place turtles at the four corners of a square, for example at (−200,−200), (200,−200),
(200, 200) and (−200,200).

• You get the position of the first turtle by using position1 = turtle1.position(). Same for
the other turtles.

• You calculate the angle between turtle 1 and turtle 2 by the command angle1 =

turtle1.towards(position2).

• You orient the first turtle according to this angle: turtle1.setheading(angle1).

• You advance the first turtle by 10 steps.
Improve your program by drawing a segment between the chasing turtle and the chased turtle each time.


	Turtle (Scratch with Python)

