
Main functions

1. Mathematics

Classical operations
• a + b, a - b, a * b classic operations

• a / b “real” division (returns a floating point number)

• a // b Euclidean division quotient (returns an integer)

• a % b remainder of the Euclidean division, called a modulo b

• abs(x) absolute value

• x ** n power xn

• 4.56e12 for 4.56× 1012

“math” module
The use of other mathematical functions requires the math module which is called by the command:

from math import *

• sqrt(x) square root
p

x

• cos(x), sin(x), tan(x) trigonometric functions cos x , sin x , tan x in radians

• pi approximate value of π= 3.14159265 . . .

• floor(x) integer just below x

• ceil(x) integer just above x

• gcd(a,b) gcd of a and b

“random” module
The random module generates numbers in a pseudo-random way. It is called by the command:

from random import *

• random() on each call, returns a floating number x at random, satisfying 0 6 x < 1.

• randint(a,b) for each call, returns an integer n at random, satisfying a 6 n 6 b.

• choice(mylist) on each call, randomly draws an item from the list.

• mylist.shuffle() mixes the list (the list is modified).

Binary notation
• bin(n) returns the binary notation of the integer n as a string. Example: bin(17) returns

'0b10001'.

• To write a number directly in binary notation, simply write the number starting with 0b (without
quotation marks). For example 0b11011 is equal to 27.



MAIN FUNCTIONS 2

2. Booleans

A boolean is a data that takes either the value True or the value False.

Comparisons
The following comparison tests return a boolean.

• a == b equality test

• a < b strict lower test

• a <= b large lower test

• a > b or a >= b higher test

• a != b non-equality test
Do not confuse “a = b” (assignment) and “a == b” (equality test).

Boolean operations
• P and Q logical “and”

• P or Q logical “or”

• not P negation

3. Strings I

Strings
• "A" or 'A' one character

• "Python" or 'Python' a string

• len(string) the string length. Example: len("Python") returns 6.

• string1 + string2 concatenation.
Example: "I love" + "Python" returns "I lovePython".

• string[i] returns the i-th character of string (numbering starts at 0).
Example with string = "Python", string[1] is equal to "y". See the table below.

Letter P y t h o n
Rank 0 1 2 3 4 5

Number/string conversion
• String. str(number) converts a number (integer or floating point number) into a string. Examples:
str(7) returns the string "7"; str(1.234) returns the string "1.234".

• Integer. int(string) returns the integer corresponding to the string. Example: int("45") re-
turns the integer 45.

• Floating point number. float(string) returns the floating point number corresponding to the
string. Example: float("3.14") returns the number 3.14.

Substrings
• string[i:j] returns the substring of characters with from rank i to rank j − 1 of string.

Example: with string = "This is a string", string[2:7] returns "is is".

• string[i:] returns characters from rank i until the end of string.
Example: string[5:] returns "is a string".

• string[:j] returns characters from the beginning to rank j−1 of string. Example: string[:4]
returns "This".



MAIN FUNCTIONS 3

Format
The format() method allows you to format text or numbers. This function returns a string.

• Text

Test            Test    Test   

– '{:10}'.format('Test') left alignment (on 10 characters)

– '{:>10}'.format('Test') right alignment

– '{:^10}'.format('Test') centered

• Integer

456    456 000456

– '{:d}'.format(456) integer

– '{:6d}'.format(456) right aligned (on 6 characters)

– '{:06d}'.format(456) adding leading zeros (on 6 characters)

• Floating point number

3.141593 3.14159265   3.1416 003.1416

– '{:f}'.format(3.14159265653589793) floating point number

– '{:.8f}'.format(3.14159265653589793) 8 decimal places

– '{:8.4f}'.format(3.14159265653589793) on 8 characters with 4 numbers after the
decimal point

– '{:08.4f}'.format(3.141592653589793) adding leading zeros

4. Strings II

Encoding
• chr(n) returns the character associated with the ASCII/unicode code number n. Example: chr(65)

returns "A"; chr(97) returns "a".

• ord(c) returns the ASCII/unicode code number associated with the character c. Example:
ord("A") returns 65; ord("a") returns 97.

The beginning of the ASCII/unicode table is given below.



MAIN FUNCTIONS 4

33 !

34 "

35 #

36 $

37 %

38 &

39 ’

40 (

41 )

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93 ]

94 ^

95 _

96 ‘

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

127 -

Upper/lower-case
• string.upper() returns a string in uppercase.

• string.lower() returns a string in lowercase.

Search/replace
• substring in string returns “true” or “false” depending on if substring appears in string.

Example: "NOT" in "TO BE OR NOT TO BE" returns True.

• string.find(substring) returns the rank at which the substring was found (and -1 otherwise).
Example: with string = "ABCDE", string.find("CD") returns 2.

• string.replace(substring,new_substring) replaces each occurrence of the substring by
the new substring.
Example: with string = "ABCDE", string.replace("CD","XY") returns "ABXYE".

Split/join
• string.split(separator) separates the string into a list of substrings (by default the separator

is the space).
Examples:

– "To be or not to be.".split() returns ['To', 'be', 'or', 'not', 'to', 'be.']

– "12.5;17.5;18".split(";") returns ['12.5', '17.5', '18']

• separator.join(mylist) groups the substrings into a single string by adding the separator
between each.
Examples:

– "".join(["To", "be", "or", "not", "to", "be."]) returns the string 'Tobeornottobe.'
Spaces are missing.

– " ".join(["To", "be", "or", "not", "to", "be."]) returns 'To be or not to

be.' It’s better when the separator is a space.

– "--".join(["To", "be", "or", "not", "to", "be."]) returns the string 'To--be--or--not--to--be.'



MAIN FUNCTIONS 5

5. Lists I

Construction of a list
Examples:

• mylist1 = [5,4,3,2,1] a list of five integers.

• mylist2 = ["Friday","Saturday","Sunday"] a list of three strings.

• mylist3 = [] the empty list.

• list(range(n)) list of integers from 0 to n− 1.

• list(range(a,b)) list of integers from a to b− 1.

• list(range(a,b,step)) list of integers from a to b− 1, with a step given by the integer step.

Get an item
• mylist[i] returns the element at rank i. Be careful, the rank starts at 0.

Example: mylist = ["A","B","C","D","E","F"] then mylist[2] returns "C".

Letter "A" "B" "C" "D" "E" "F"
Rank 0 1 2 3 4 5

• mylist[-1] returns the last element, mylist[-2] returns the second last element. . .

• mylist.pop() removes the last item from the list and returns it.

Add one element (or more)
• mylist.append(element) adds the item at the end of the list. Example: if mylist =

[5,6,7,8] then mylist.append(9) adds 9 to the list, mylist is now [5,6,7,8,9].

• new_mylist = mylist + [element] provides a new list with an extra element at the end.
Example: [1,2,3,4] + [5] is [1,2,3,4,5].

• [element] + mylist returns a list where the item is added at the beginning. Example: [5] +

[1,2,3,4] is [5,1,2,3,4].

• mylist1 + mylist2 concatenates the two lists. Example: with mylist1 = [4,5,6] and
mylist2 = [7,8,9] then mylist1 + mylist2 is [4,5,6,7,8,9].

Example of construction. Here is how to build the list that contains the first squares:

list_squares = [] # We start from an empty list

for i in range(10):

list_squares.append(i**2) # We add squares one by one

At the end list_squares is:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Browse a list
• len(mylist) returns the length of the list. Example: len([5,4,3,2,1]) returns 5.

• Browse a list (and here display each item):

for element in mylist:

print(element)

• Browse a list using the rank.



MAIN FUNCTIONS 6

n = len(mylist)

for i in range(n):

print(i,mylist[i])

6. Lists II

Mathematics
• max(mylist) returns the largest element. Example: max([10,16,13,14]) returns 16.

• min(mylist) returns the smallest element. Example: min([10,16,13,14]) returns 10.

• sum(mylist) returns the sum of all elements. Example: sum([10,16,13,14]) returns 53.

Slicing lists
• mylist[a:b] returns the sublist of elements from rank a to rank b− 1.

• mylist[a:] returns the list of elements from rank a until the end.

• mylist[:b] returns the list of items from the beginning to rank b− 1.

Letter "A" "B" "C" "D" "E" "F" "G"
Rank 0 1 2 3 4 5 6

For example if mylist = ["A","B","C","D","E","F","G"] then:
• mylist[1:4] returns ["B","C","D"].

• mylist[:2] is like mylist[0:2] and returns ["A","B"].

• mylist[4:] returns ["E","F","G"]. It’s the same thing as mylist[4:n] where n =

len(mylist).

Find the rank of an element
• mylist.index(element) returns the first position at which the item was found. Example: with
mylist = [12, 30, 5, 9, 5, 21], mylist.index(5) returns 2.

• If you just want to know if an item belongs to a list, then the statement:
element in mylist

returns True or False. Example: with mylist = [12, 30, 5, 9, 5, 21], “9 in mylist” is
true, while “8 in mylist” is false.

Order
• sorted(mylist) returns the ordered list of items.

Example: sorted([13,11,7,4,6,8,12,6]) returns the list [4,6,6,7,8,11,12,13].

• mylist.sort() does not return anything but the list mylist is now ordered.

Invert a list
Here are three methods:

• mylist.reverse() modifies the list in place;

• list(reversed(mylist)) returns a new list;

• mylist[::-1] returns a new list.

Delete an item
Three methods.



MAIN FUNCTIONS 7

• mylist.remove(element) deletes the first occurrence found.
Example: mylist = [2,5,3,8,5], the instruction mylist.remove(5) modifies the list which is
now [2,3,8,5] (the first 5 has disappeared).

• del mylist[i] deletes element at rank i (the list is modified).

• element = mylist.pop() removes the last item from the list and returns it.

List comprehension
• Let’s start from a list, for example mylist = [1,2,3,4,5,6,7,6,5,4,3,2,1].

• list_doubles = [ 2*x for x in mylist ] returns a list that contains the doubles of the
items of mylist. So this is the list [2,4,6,8,...].

• liste_squares = [ x**2 for x in mylist ] returns the list of squares of the items in the
list mylist. So this is the list [1,4,9,16,...].

• partial_list = [ x for x in mylist if x > 2 ] extracts from the list only the elements
greater than 2. So this is the list [3,4,5,6,7,6,5,4,3].

List of lists
Example:

array = [ [2,14,5], [3,5,7], [15,19,4], [8,6,5] ]

corresponds to the table:

8 6 5

15 19 4

3 5 7

2 14 5

index j

index i

j = 0 j = 1 j = 2

i = 0

i = 1

i = 2

i = 3

Then array[i] returns the sublist of rank i, and array[i][j] returns the element located in the sublist
number i, at rank j of this sublist. For example:

• array[0] returns the sublist [2,14,5].

• array[1] returns the sublist [3,5,7].

• array[0][0] returns the integer 2.

• array[0][1] returns the integer 14.

• array[2][1] returns the integer 19.

A table of n rows and p columns.
• array = [[0 for j in range(p)] for i in range(n)] initializes an array and fills it

with 0.

• array[i][j] = 1 modifies a value in the table (the one at the location (i, j)).



MAIN FUNCTIONS 8

7. Input/output

Display
• print(string1,string2,string3,...) displays strings or objects. Example: print("Value
=",14) displays Value = 14. Example: print("Line 1 \n Line 2") displays on two lines.

• Separator. print(...,sep="...") changes the separator (by default the separator is the space
character). Example: print("Bob",17,13,16,sep="; ") displays Bob; 17; 13; 16.

• End of line. print(...,end="...") changes the character placed at the end (by default it is the
line break character \n). Example print(17,end="") then print(76) displays 1776 on a single
line.

Keyboard entry
input() pauses the program and waits for the user to send a message on the keyboard (ended by pressing
the “Enter” key). The message is a string.
Here is a small program that asks for the user’s first name and age and displays a message like “Hello Kevin”
then “You are a minor/adult” according to age.

first_name = input ("What's your name? ")

print("Hello",first_name)

age_str = input("How old are you? ")

age = int(age_str)

if age >= 18:

print("You're an adult!")

else:

print("You're a minor!")

8. Files

Order
• fi = open("my_file.txt","r") opening in reading ("r" for read).

• fi = open("my_file.txt","w") opening in writing ("w" for write). The file is created if it
does not exist, if it existed the previous content is first deleted.

• fi = open("my_file.txt","a") opening for writing, the data will be written at the end of the
current data ("a" for append).

• fi.write("one line") write to the file.

• fi.read() reads the whole file (see below for another method).

• fi.readlines() reads all the lines (see below for another method).

• fi.close() file closing.

Write lines to a file

fi = open("my_file.txt","w")

fi.write("Hello world!\n")

line = "Hi there.\n"



MAIN FUNCTIONS 9

fi.write(line)

fi.close()

Read lines from a file

fi = open("my_file.txt","r")

for line in fi:

print(line)

fi.close()

Read a file (official method)

with open("my_file.txt","r") as fi:

for line in fi:

print(line)

9. Turtle

The turtle module is called by the command:
from turtle import *

Main commands
• forward(length) advances a number of steps

• backward(length) goes backwards

• right(angle) turns to the right (without advancing) at a given angle in degrees

• left(angle) turns left

• setheading(direction) points in a direction (0 = right, 90 = top, −90 = bottom, 180 = left)

• goto(x,y) moves to the point (x , y)

• setx(newx) changes the value of the abscissa

• sety(newy) changes the value of the ordinate

• down() sets the pen down

• up() sets the pen up

• width(size) changes the thickness of the line

• color(col) changes the color: "red", "green", "blue", "orange", "purple". . .

• position() returns the (x , y) position of the turtle

• heading() returns the direction angle to which the turtle is pointing

• towards(x,y) returns the angle between the horizontal and the segment starting at the turtle and
ending at the point (x , y)

• speed("fastest") maximum travel speed

• exitonclick() ends the program as soon as you click

Several turtles
Here is an example of a program with two turtles.



MAIN FUNCTIONS 10

turtle1 = Turtle() # with capital 'T'!

turtle2 = Turtle()

turtle1.color('red')

turtle2.color('blue')

turtle1.forward(100)

turtle2.left(90)

turtle2.forward(100)

10. Matplotlib

With the matplotlib module it is very easy to draw a list. Here is an example.

import matplotlib.pyplot as plt

mylist1 = [3,5,9,8,0,3]

mylist2 = [4,7,7,2,8,9]

plt.plot(mylist1,color="red")

plt.plot(mylist2,color="blue")

plt.grid()

plt.show()

Main functions.
• plt.plot(mylist) traces the points of a list (in the form (i,`i)) that are joined by segments.

• plt.plot(list_x,list_y) traces the points of a list (of the form (x i , yi) where x i browses the
first list and yi the second).

• plt.scatter(x,y,color='red',s=100) displays a point at (x , y) (of a size s).

• plt.grid() draws a grid.

• plt.show() displays everything.

• plt.close() exits the display.



MAIN FUNCTIONS 11

• plt.xlim(xmin,xmax) defines the interval for the x .

• plt.ylim(ymin,ymax) defines the interval for the y .

• plt.axis('equal') imposes an orthonormal basis.

11. Tkinter

11.1. Graphics

To display this:

The code is:

# tkinter window

root = Tk()

canvas = Canvas(root, width=800, height=600, background="white")

canvas.pack(fill="both", expand=True)

# A rectangle

canvas.create_rectangle(50,50,150,100,width=2)

# A rectangle with thick blue edges

canvas.create_rectangle(200,50,300,150,width=5,outline="blue")

# A rectangle filled with purple

canvas.create_rectangle(350,100,500,150,fill="purple")

# An ellipse

canvas.create_oval(50,110,180,160,width=4)

# Some text

canvas.create_text(400,75,text="Bla bla bla bla",fill="blue")

# Launch of the window

root.mainloop()

Some explanations:
• The tkinter module allows us to define variables root and canvas that determine a graphic

window (here width 800 and height 600 pixels). Then describe everything you want to add to the
window. And finally the window is displayed by the command root.mainloop() (at the very end).



MAIN FUNCTIONS 12

• Attention! The window’s graphic marker has its y-axis pointing downwards. The origin (0, 0) is the
top left corner (see figure below).

• Command to draw a rectangle: create_rectangle(x1,y1,x2,y2); just specify the coordinates
(x1, y1), (x2, y2) of two opposite vertices. The option width adjusts the thickness of the line, outline
defines the color of this line, fill defines the filling color.

• An ellipse is traced by the command create_oval(x1,y1,x2,y2), where (x1, y1), (x2, y2) are the
coordinates of two opposite vertices of a rectangle framing the desired ellipse (see figure). A circle is
obtained when the corresponding rectangle is a square!

• Text is displayed by the command canvas.create_text(x,y,text="My text") specifying the
coordinates (x , y) of the point from which you want to display the text.

x

y

(x1, y1)

(x2, y2)
(x1, y1)

(x2, y2)

(0,0)

11.2. Buttons

It is more ergonomic to display windows where actions are performed by clicking on buttons. Here is the
window of a small program with two buttons. The first button changes the color of the rectangle, the second
button ends the program.

The code is:

from tkinter import *

from random import *



MAIN FUNCTIONS 13

root = Tk()

canvas = Canvas(root, width=400, height=200, background="white")

canvas.pack(fill="both", expand=True)

def action_button():

canvas.delete("all") # Clear all

colors = ["red","orange","yellow","green","cyan","blue","purple"]

col = choice(colors) # Random color

canvas.create_rectangle(100,50,300,150,width=5,fill=col)

return

button_color = Button(root,text="View", width=20, command=action_button)

button_color.pack(pady=10)

button_quit = Button(root,text="Quit", width=20, command=root.quit)

button_quit.pack(side=BOTTOM, pady=10)

root.mainloop()

Some explanations:
• A button is created by the command Button. The text option customizes the text displayed on the

button. The button created is added to the window by the method pack.

• The most important thing is the action associated with the button! It is the option command that
receives the name of the function to be executed when the button is clicked. For our example
command=action_button, associate the click on the button with a change of color.

• Attention! You have to give the name of the function without brackets: command = my_function

and not command = my_function().

• To associate the button with “Quit” and close the window, the argument is command = root.quit.

• The instruction canvas.delete("all") deletes all drawings from our graphic window.

11.3. Text

Here’s how to display text with Python and the graphics window module tkinter.

The code is:

from tkinter import *

from tkinter.font import Font

# tkinter window

root = Tk()

canvas = Canvas(root, width=800, height=600, background="white")

canvas.pack(fill="both", expand=True)

# Font

myfont = Font(family="Times", size=30)

# Some text

canvas.create_text(100,100, text="Text with Python!",



MAIN FUNCTIONS 14

anchor=SW, font=myfont, fill="blue")

# Launch the window

root.mainloop()

Some explanations:
• root and canvas are the variables that define a graphic window (here of width 800 and height 600

pixels). This window is launched by the last command: root.mainloop().

• We remind you that for the graphic coordinates, the y-axis is directed downwards. To define a
rectangle, simply specify the coordinates (x1, y1) and (x2, y2) from two opposite vertices (see figure
below).

• The text is displayed by the command canvas.create_text(). It is necessary to specify the (x , y)
coordinates of the point from which you want to display the text.

• The text option allows you to pass the string to display.

• The anchor option allows you to specify the text anchor point, anchor=SW means that the text box
is anchored to the Southwest point (SW) (see figure below).

• The fill option allows you to specify the text color.

• The font option allows you to define the font (i.e. the style and size of the characters). Here are
some examples of fonts, it’s up to you to test them:

– Font(family="Times", size=20)

– Font(family="Courier", size=16, weight="bold") in bold

– Font(family="Helvetica", size=16, slant="italic") in italic

x

y

(x1, y1)

(x2, y2)

South West anchor

(0, 0)

11.4. Mouse click

Here is a small program that displays a graphic window. Each time the user clicks (with the left mouse
button) the program displays a small square (on the window) and displays “Click at x = . . ., y = . . .” (on
the console).

from tkinter import *

# Window

root = Tk()

canvas = Canvas(root, width=800, height=600, background="white")

canvas.pack(side=LEFT, padx=5, pady=5)

# Catch mouse click

def action_mouse_click(event):

canvas.focus_set()



MAIN FUNCTIONS 15

x = event.x

y = event.y

canvas.create_rectangle(x,y,x+10,y+10,fill="red")

print("Click at x =",x,", y =",y)

return

# Association click/action

canvas.bind("<Button-1>", action_mouse_click)

# Launch

root.mainloop()

Here are some explanations:
• The creation of the window is usual. The program ends with the launch using the command
mainloop().

• The first key point is to associate a mouse click to an action, that’s what the line does:
canvas.bind("<Button-1>", action_mouse_click)

Each time the left mouse button is clicked, Python executes the action_mouse_click function.
(Note that there are no brackets for the call to the function.)

• Second key point: the action_mouse_click function retrieves the click coordinates and then does
two things here: it displays a small rectangle at the click location and prints the (x , y) coordinates in
the terminal window.

• The coordinates x and y are expressed in pixels; (0, 0) refers to the upper left corner of the window
(the area delimited by canvas).

11.5. Movement

Here is a program that moves a small square and bounces it off the edges of the window.

Here are the main points:
• An object rect is defined, it is a global variable, as well as its coordinates x0, y0.

• This object is (a little bit) moved by the function mymove() which shifts the rectangle by (dx,dy).

• The key point is that this function will be executed again after a short period of time. The command:
canvas.after(50,mymove)

requests a new execution of the function mymove() after a short delay (here 50 milliseconds).

• The repetition of small shifts simulates movement.

from tkinter import *



MAIN FUNCTIONS 16

the_width = 400

the_height = 200

root = Tk()

canvas = Canvas(root,width=the_width,height=the_height,background="white")

canvas.pack(fill="both", expand=True)

# Coordinates and speed

x0, y0 = 100,100

dx = +5 # Horizontal speed

dy = +2 # Vertical speed

# The rectangle to move

rect = canvas.create_rectangle(x0,y0,x0+20,y0+20,width=2,fill="red")

# Main function

def mymove():

global x0, y0, dx, dy

x0 = x0 + dx # New abscissa

y0 = y0 + dy # New ordinate

canvas.coords(rect,x0,y0,x0+20,y0+20) # Move

if x0 < 0 or x0 > the_width:

dx = -dx # Change of horizontal direction

if y0 < 0 or y0 > the_height:

dy = -dy # Change of vertical direction

canvas.after(50,mymove) # Call after 50 milliseconds

return

# Function for the button

def action_move():

mymove()

return

# Buttons

button_move = Button(root,text="Move", width=20, command=action_move)

button_move.pack(pady=10)

button_quit = Button(root,text="Quit", width=20, command=root.quit)

button_quit.pack(side=BOTTOM, pady=10)

root.mainloop()


	Main functions
	Mathematics
	Booleans
	Strings I
	Strings II
	Lists I
	Lists II
	Input/output
	Files
	Turtle
	Matplotlib
	Tkinter
	Graphics
	Buttons
	Text
	Mouse click
	Movement



