Ensembles et applications

1. Ensembles

- Un ensemble est une collection d'éléments.
- L'ensemble vide, Ø est l'ensemble ne contenant aucun élément.
- On note

 $x \in E$

si x est un élément de E, et $x \notin E$ dans le cas contraire.

- L'inclusion. E ⊂ F si tout élément de E est aussi un élément de F.
 Autrement dit : ∀x ∈ E (x ∈ F). On dit alors que E est un sousensemble de F ou une partie de F.
- L'égalité. E = F si et seulement si $E \subset F$ et $F \subset E$.
- Ensemble des parties de E. On note $\mathcal{P}(E)$ l'ensemble des parties de E. Par exemple si $E = \{1, 2, 3\}$:

$$\mathscr{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

— Complémentaire. Si $A \subset E$,

$$C_E A = \{ x \in E \mid x \notin A \}$$

On le note aussi $E\setminus A$ et juste $\mathbb{C}A$ s'il n'y a pas d'ambiguïté (et parfois aussi A^c ou \overline{A}).

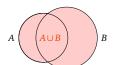
— *Union*. Pour $A, B \subset E$,

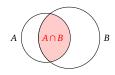
$$A \cup B = \left\{ x \in E \mid x \in A \text{ ou } x \in B \right\}$$

Le « ou » n'est pas exclusif : x peut appartenir à A et à B en même temps.

Intersection.

$$A \cap B = \left\{ x \in E \mid x \in A \text{ et } x \in B \right\}$$





Règles de calculs

Soient A, B, C des parties d'un ensemble E.

- $A \cap B = B \cap A$
- $A \cap (B \cap C) = (A \cap B) \cap C$ (on peut écrire $A \cap B \cap C$ sans ambigüité)
- $-A \cap \emptyset = \emptyset$, $A \cap A = A$, $A \subset B \iff A \cap B = A$
- $-A \cup B = B \cup A$
- $A \cup (B \cup C) = (A \cup B) \cup C$ (on peut écrire $A \cup B \cup C$ sans ambiguïté)
- $-A \cup \emptyset = A$, $A \cup A = A$, $A \subset B \iff A \cup B = B$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

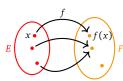
- $C(A \cup B) = CA \cap CB$

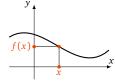
Produit cartésien

Soient E et F deux ensembles. Le *produit cartésien*, noté $E \times F$, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

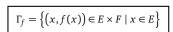
2. Applications

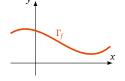
— Une *application* (ou une *fonction*) $f: E \rightarrow F$, c'est la donnée pour chaque élément $x \in E$ d'un unique élément de F noté f(x).



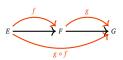


- <u>Égalité</u>. Deux applications $f, g: E \to F$ sont égales si et seulement si pour tout $x \in E$, f(x) = g(x). On note alors f = g.
- Le graphe de $f: E \to F$ est





— *Composition*. Soient $f: E \to F$ et $g: F \to G$ alors $g \circ f: E \to G$ est l'application définie par $g \circ f(x) = g(f(x))$.



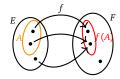
— Restriction. Soient $f: E \to F$ et $A \subset E$ alors la restriction de f à A est l'application $f|_A: A \longrightarrow F$ f(x).

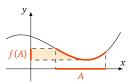
Image directe, image réciproque

Soient E, F deux ensembles.

Définition. Soit $A \subset E$ et $f: E \to F$, l'*image directe* de A par f est l'ensemble

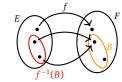
$$f(A) = \{ f(x) \mid x \in A \}$$

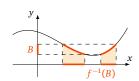




Définition. Soit $B \subset F$ et $f: E \to F$, l'image réciproque de B par f est l'ensemble

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}$$





Fixons $y \in F$. Tout élément $x \in E$ tel que f(x) = y est un *antécédent* de y. En termes d'image réciproque l'ensemble des antécédents de y est $f^{-1}(\{y\})$.

3. Injection, surjection, bijection

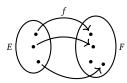
Injection, surjection

Soit E, F deux ensembles et $f: E \to F$ une application.

Définition. f est *injective* si pour tout $x, x' \in E$ avec f(x) = f(x') alors x = x'. Autrement dit :

$$\forall x, x' \in E \quad (f(x) = f(x') \implies x = x')$$

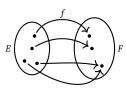
Les applications f représentées sont injectives :

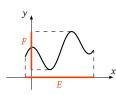


Définition. f est *surjective* si pour tout $y \in F$, il existe $x \in E$ tel que y = f(x). Autrement dit :

$$\forall y \in F \quad \exists x \in E \quad (y = f(x))$$

Une autre formulation : f est surjective si et seulement si f(E) = F. Les applications f représentées sont surjectives :





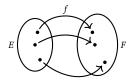
- f est injective si et seulement si tout élément y de F a au plus un antécédent (et éventuellement aucun).
- f est surjective si et seulement si tout élément y de F a au moins un antécédent.

Bijection

Définition. f est bijective si elle est injective et surjective. Cela équivaut à : pour tout $y \in F$ il existe un unique $x \in E$ tel que y = f(x). Autrement

$$\forall y \in F \quad \exists ! x \in E \quad (y = f(x))$$

Autrement dit, tout élément de F a un unique antécédent par f.



Proposition. Soit E, F des ensembles et $f: E \rightarrow F$ une application.

- 1. L'application f est bijective si et seulement si il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$.
- 2. Si f est bijective alors l'application g est unique et elle aussi est bijective. L'application g s'appelle la bijection réciproque de f et est notée f^{-1} . De plus $(f^{-1})^{-1} = f$.

Proposition. Soient $f: E \to F$ et $g: F \to G$ des applications bijectives. L'application $g \circ f$ est bijective et sa bijection réciproque est

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

4. Ensembles finis

Définition. Un ensemble E est *fini* s'il existe un entier $n \in \mathbb{N}$ et une bijection de E vers $\{1, 2, ..., n\}$. Cet entier n est unique et s'appelle le *cardinal* de *E* (ou le *nombre d'éléments*) et est noté Card *E*. Le cardinal de l'ensemble vide est 0.

Quelques propriétés :

- Si A est un ensemble fini et $B \subset A$ alors B est aussi un ensemble fini et Card $B \leq \text{Card } A$.
- Si A, B sont des ensembles finis disjoints (c'est-à-dire $A \cap B = \emptyset$) alors $Card(A \cup B) = CardA + CardB$.
- Si A est un ensemble fini et $B \subset A$ alors $Card(A \setminus B) = Card A Card B$. En particulier si $B \subset A$ et Card A = Card B alors A = B.
- Enfin pour A, B deux ensembles finis quelconques :

$$Card(A \cup B) = CardA + CardB - Card(A \cap B)$$

Injection, surjection, bijection

Proposition. Soit E, F deux ensembles finis et $f: E \to F$ une application.

- 1. Si f est injective alors $Card E \leq Card F$.
- 2. Si f est surjective alors $Card E \ge Card F$.
- 3. Si f est bijective alors Card E = Card F.

Proposition. Soit E, F deux ensembles finis et $f: E \to F$ une application. Si Card E = Card F alors les assertions suivantes sont équivalentes :

- i. f est injective.
- ii. f est surjective,
- iii. f est bijective.

Proposition (Principe des tiroirs). Si l'on range dans k tiroirs, n > k paires de chaussettes alors il existe (au moins) un tiroir contenant (au moins) deux paires de chaussettes.

Nombres d'applications

Soient E, F des ensembles finis, non vides. On note Card E = n et Card F = n

Proposition. Le nombre d'applications différentes de E dans F est : p^n

Autrement dit c'est $(Card F)^{Card E}$

Proposition. Le nombre d'injections de E dans F est :

$$p \times (p-1) \times \cdots \times (p-(n-1)).$$

Notation *factorielle* : $n! = 1 \times 2 \times 3 \times \cdots \times n$. Avec 1! = 1 et par convention 0! = 1.

Proposition. Le nombre de bijections d'un ensemble E de cardinal n dans lui-même est : n!

Coefficients du binôme de Newton

Soit E un ensemble fini de cardinal n.

Proposition. If y a $2^{Card E}$ sous-ensembles de $E: Card \mathscr{P}(E) = 2^n$

Définition. Le nombre de parties à k éléments d'un ensemble à n éléments est noté $\binom{n}{k}$ ou C_n^k .

Proposition.

$$\binom{n}{0} = 1, \binom{n}{1} = n, \binom{n}{n} = 1.$$

$$- \left[\binom{n}{n-k} = \binom{n}{k} \right]$$

$$- \left[\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n} = 2^n \right]$$

Proposition.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \qquad (0 < k < n)$$

Le triangle de Pascal est un algorithme pour calculer ces coefficients $\binom{n}{k}$. Chaque élément est obtenu en ajoutant les deux nombres qui lui sont juste au-dessus et au-dessus à gauche.

Proposition.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Formule du binôme de Newton

Théorème. Soient $a, b \in \mathbb{R}$ (ou \mathbb{C}) et n un entier positif alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$$

Autrement dit:

$$(a+b)^{n} = \binom{n}{0} a^{n} \cdot b^{0} + \binom{n}{1} a^{n-1} \cdot b^{1} + \dots + \binom{n}{k} a^{n-k} \cdot b^{k} + \dots + \binom{n}{n} a^{0} \cdot b^{n}$$

5. Relation d'équivalence

Une *relation* sur un ensemble E, c'est la donnée pour tout couple $(x, y) \in$ $E \times E$ de « Vrai » (s'ils sont en relation), ou de « Faux » sinon.

Définition. Soit E un ensemble et \mathcal{R} une relation, c'est une relation d'équivalence si :

- $∀x ∈ E, x \Re x, (réflexivité)$
- $\forall x, y \in E, x \Re y \implies y \Re x,$ (symétrie)

Définition. Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Soit $x \in E$, la classe d'équivalence de x est

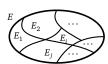
$$cl(x) = \{ y \in E \mid y \mathcal{R} x \}$$

cl(x) est donc un sous-ensemble de E, on le note aussi \overline{x} . Si $y \in cl(x)$, on dit que y un représentant de cl(x).

Proposition.

- 1. $cl(x) = cl(y) \iff x \Re y$.
- 2. Pour tout $x, y \in E$, cl(x) = cl(y) ou $cl(x) \cap cl(y) = \emptyset$.
- 3. Soit C un ensemble de représentants de toutes les classes alors $\{cl(x) \mid$ $x \in C$ constitue une partition de E.

Une *partition* de *E* est un ensemble $\{E_i\}$ de parties de *E* tel que $E = \bigcup_i E_i$ et $E_i \cap E_j = \emptyset$ (si $i \neq j$).



L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Soit $n \ge 2$ un entier fixé. La relation suivante sur l'ensemble $E = \mathbb{Z}$ est une relation d'équivalence :

$$a \equiv b \pmod{n} \iff a - b \text{ est un multiple de } n$$

La classe d'équivalence de $a \in \mathbb{Z}$ est notée \overline{a} :

$$\overline{a} = \operatorname{cl}(a) = \{ b \in \mathbb{Z} \mid b \equiv a \pmod{n} \}.$$

Comme un tel b s'écrit b = a + kn pour un certain $k \in \mathbb{Z}$ alors :

$$\overline{a} = a + n\mathbb{Z} = \{a + kn \mid k \in \mathbb{Z}\}.$$

L'ensemble des classes d'équivalence est l'ensemble

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

qui contient exactement n éléments.