Nombres complexes

1. z = a + i b

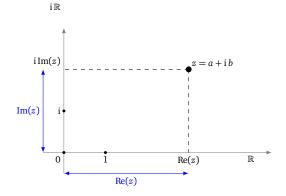
Un *nombre complexe* est un couple $(a, b) \in \mathbb{R}^2$ que l'on notera a + ib,

$$i^2 = -1$$

Pour z = a + i b et z' = a' + i b':

- addition: (a+ib)+(a'+ib')=(a+a')+i(b+b')
- multiplication: $(a+ib) \times (a'+ib') = (aa'-bb')+i(ab'+ba')$. On développe en suivant les règles de la multiplication usuelle et la

Soit z = a + ib un nombre complexe, sa partie réelle est le réel a et on la note Re(z); sa *partie imaginaire* est le réel b et on la note Im(z).



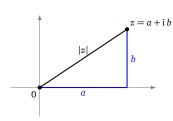
- L'inverse : si $z \neq 0$, il existe un unique $z' \in \mathbb{C}$ tel que zz' = 1 (où
- La division : $\frac{z}{z'}$ est le nombre complexe $z \times \frac{1}{z'}$. Propriété d'intégrité : si zz' = 0 alors z = 0 ou z' = 0.
- Puissances : $z^2 = z \times z$, $z^n = z \times \cdots \times z$ (n fois, $n \in \mathbb{N}$). Par convention $z^0 = 1$ et $z^{-n} = \left(\frac{1}{z}\right)^n = \frac{1}{z^n}$.

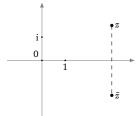
Proposition. *Pour tout* $z \in \mathbb{C}$ *différent de* 1 :

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}.$$

2. Module

- Le **module** de z = a + ib est le réel positif $|z| = \sqrt{a^2 + b^2}$
- Le conjugué de z = a + ib est $\bar{z} = a ib$
- $|z|^2 = z\bar{z} | \operatorname{car} z \times \bar{z} = (a + ib)(a ib) = a^2 + b^2.$





$$\overline{z+z'} = \overline{z} + \overline{z'}, \quad \overline{\overline{z}} = z, \quad \overline{zz'} = \overline{z}\overline{z'}$$

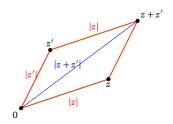
$$-z = \bar{z} \Longleftrightarrow z \in \mathbb{R}$$

$$- |z|^2 = z \times \overline{z}, \quad |\overline{z}| = |z|, \quad |zz'| = |z||z'|$$

$$-|z| = 0 \iff z = 0$$

Proposition (L'inégalité triangulaire).

$$\left|z+z'\right| \leqslant |z| + \left|z'\right|$$



3. Équation du second degré

Pour $z \in \mathbb{C}$, une *racine carrée* est un nombre complexe ω tel que $\omega^2 = z$. Tout nombre complexe, admet deux racines carrées, ω et $-\omega$.

Proposition. *L'équation du second degré* $az^2 + bz + c = 0$, où $a, b, c \in \mathbb{C}$ et $a \neq 0$, possède deux solutions $z_1, z_2 \in \mathbb{C}$ éventuellement confondues. Soit $\Delta = b^2 - 4ac$ le discriminant et $\delta \in \mathbb{C}$ une racine carrée de Δ . Alors les solutions sont

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

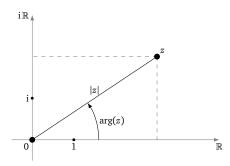
Corollaire. Si les coefficients a,b,c sont réels alors $\Delta \in \mathbb{R}$ et les solutions sont de trois types :

- $si \ \Delta > 0$, on a deux solutions réelles $\frac{-b \pm \sqrt{\Delta}}{2a}$, $si \ \Delta = 0$, la racine double est réelle et vaut $-\frac{b}{2a}$
- si Δ < 0, on a deux solutions complexes conjuguées $\frac{-b \pm i \sqrt{|\Delta|}}{2a}$

Théorème (d'Alembert–Gauss). *Soit* $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ un polynôme à coefficients complexes et de degré n. Alors l'équation P(z) = 0admet exactement n solutions complexes comptées avec leur multiplicité. Il existe donc des nombres complexes z_1, \dots, z_n (dont certains sont éventuellement confondus) tels que $P(z) = a_n(z-z_1)(z-z_2)\cdots(z-z_n)$.

4. Argument

Pour tout $z \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, un nombre $\theta \in \mathbb{R}$ tel que $z = |z| (\cos \theta + i \sin \theta)$ est appelé un *argument* de z et noté $\theta = arg(z)$.



Cet argument est défini modulo 2π . On peut imposer à cet argument d'être unique si on rajoute la condition $\theta \in]-\pi, +\pi]$ (ou bien $\theta \in [0, 2\pi[)$.

$$\theta \equiv \theta' \pmod{2\pi} \iff \exists k \in \mathbb{Z}, \ \theta = \theta' + 2k\pi \iff \left\{ \begin{array}{c} \cos\theta = \cos\theta' \\ \sin\theta = \sin\theta' \end{array} \right.$$

Proposition.

- $\arg(zz') \equiv \arg(z) + \arg(z') \pmod{2\pi}$
- $\arg(z^n) \equiv n \arg(z) \pmod{2\pi}$
- $\arg(1/z) \equiv -\arg(z) \pmod{2\pi}$
- $--\arg(\bar{z}) \equiv -\arg z \pmod{2\pi}$

5. Formule de Moivre, notation exponentielle

La formule de Moivre est :

$$(\cos\theta + \mathrm{i}\sin\theta)^n = \cos(n\theta) + \mathrm{i}\sin(n\theta)$$

Nous définissons la notation exponentielle par

$$e^{\mathrm{i}\,\theta} = \cos\theta + \mathrm{i}\sin\theta$$

et donc tout nombre complexe s'écrit

$$z = \rho e^{\mathrm{i}\,\theta}$$

où $\rho = |z|$ est le module et $\theta = \arg(z)$ est un argument.

Avec la notation exponentielle, on peut écrire pour $z=\rho e^{\mathrm{i}\,\theta}$ et $z'=\rho' e^{\mathrm{i}\,\theta'}$:

$$-zz' = \rho \rho' e^{i\theta} e^{i\theta'} = \rho \rho' e^{i(\theta + \theta')}$$
$$z'' = \rho \rho' e^{i\theta} e^{i\theta'} = \rho \rho' e^{i(\theta + \theta')}$$

-
$$zz' = \rho \rho' e^{i\theta} e^{i\theta'} = \rho \rho' e^{i(\theta+\theta')}$$

- $z^n = (\rho e^{i\theta})^n = \rho^n (e^{i\theta})^n = \rho^n e^{in\theta}$
- $1/z = 1/(\rho e^{i\theta}) = \frac{1}{\rho} e^{-i\theta}$

$$-\bar{z} = \rho e^{-i\theta}$$

La formule de Moivre se réduit à l'égalité : $(e^{i\theta})^n = e^{in\theta}$

Enfin: $\rho e^{\mathrm{i}\theta} = \rho' e^{\mathrm{i}\theta'}$ (avec $\rho, \rho' > 0$) si et seulement si $\rho = \rho'$ et $\theta \equiv \theta'$ (mod 2π).

6. Racines n-ième

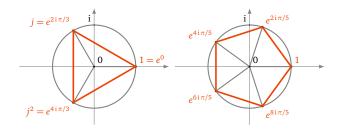
Pour $z\in\mathbb{C}$ et $n\in\mathbb{N},$ une racine n-ième est un nombre $\omega\in\mathbb{C}$ tel que $\omega^n=z$.

Proposition. Il y a n racines n-ièmes $\omega_0, \omega_1, \ldots, \omega_{n-1}$ de $z = \rho e^{i\theta}$, ce sont :

$$\omega_k = \rho^{1/n} e^{\frac{i\theta + 2ik\pi}{n}} \qquad k = 0, 1, \dots, n-1$$

Par exemple pour z = 1, on obtient les *n* racines *n*-ièmes de l'unité :

$$e^{2\mathrm{i}k\pi/n} \qquad k=0,1,\ldots,n-1$$



Racine 3-ième (à gauche) et 5-ième de l'unité

7. Applications à la trigonométrie

Formules d'Euler, pour $\theta \in \mathbb{R}$:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Développement. On exprime $\sin n\theta$ ou $\cos n\theta$ en fonction des puissances de $\cos \theta$ et $\sin \theta$.

Méthode : on utilise la formule de Moivre pour écrire $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$ que l'on développe avec la formule du binôme de Newton.

Exemple.

$$\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^{3}$$

$$= \cos^{3} \theta + 3 i \cos^{2} \theta \sin \theta - 3 \cos \theta \sin^{2} \theta - i \sin^{3} \theta$$

$$= (\cos^{3} \theta - 3 \cos \theta \sin^{2} \theta) + i (3 \cos^{2} \theta \sin \theta - \sin^{3} \theta)$$

En identifiant les parties réelles et imaginaires, on déduit que

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$
 et $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$.

Linéarisation. On exprime $\cos^n\theta$ ou $\sin^n\theta$ en fonction des $\cos k\theta$ et $\sin k\theta$ pour k allant de 0 à n.

Méthode: avec la formule d'Euler on écrit $\sin^n\theta = \left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^n$. On développe à l'aide du binôme de Newton puis on regroupe les termes par paires conjuguées.

Exemple.

$$\sin^{3}\theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{3}$$

$$= \frac{1}{-8i} \left((e^{i\theta})^{3} - 3(e^{i\theta})^{2} e^{-i\theta} + 3e^{i\theta} (e^{-i\theta})^{2} - (e^{-i\theta})^{3} \right)$$

$$= \frac{1}{-8i} \left(e^{3i\theta} - 3e^{i\theta} + 3e^{-i\theta} - e^{-3i\theta} \right)$$

$$= -\frac{1}{4} \left(\frac{e^{3i\theta} - e^{-3i\theta}}{2i} - 3\frac{e^{i\theta} - e^{-i\theta}}{2i} \right)$$

$$= -\frac{\sin 3\theta}{4} + \frac{3\sin \theta}{4}$$

8. Équation complexe d'un cercle

L'équation du cercle $\mathscr{C}(\Omega, r)$ de centre Ω , d'affixe ω et de rayon r est

$$z\bar{z} - \bar{\omega}z - \omega\bar{z} = r^2 - |\omega|^2$$

Il est plus simple de retrouver la formule à chaque fois : $\operatorname{dist}(\Omega, M) = r \iff |z - \omega| = r \iff |z - \omega|^2 = r^2 \iff (z - \omega)\overline{(z - \omega)} = r^2$.



9. Équation complexe d'une droite

La droite d'équation ax+by=c (avec $a,b,c\in\mathbb{R}$) a pour équation complexe :

$$\bar{\omega}z + \omega \bar{z} = k$$

où $\omega = a + i b \in \mathbb{C}^*$ et $k = 2c \in \mathbb{R}$.

10. Équation $\frac{|z-a|}{|z-b|} = k$

Proposition. Soit A,B deux points du plan et $k \in \mathbb{R}_+$. L'ensemble des points M tel que $\frac{MA}{MB} = k$ est

- une droite qui est la médiatrice de [AB], si k = 1,
- un cercle, sinon.

